@Gowtham_Rao , important point. I probably should have stated it more generically as:
“we add an inclusion criteria that requires some period of prior observation, with the intent to give confidence that the event is new because it hadn’t been previously observed for that prior observation duration”
365 days is purely a convenient heuristic commonly used, but it has no real empirical basis and likely is highly inappropriate in many circumstances: it is probably too short if it would be reasonable to expect a person wouldn’t go back to seek follow-up care every year because it can be managed effectively by the patient (mild arthritis and osteoporosis come to mind), and it is probably too long if it would be reasonable to expect very regular care (like end-stage renal disease, where you’d expect to see monthly dialysis). I’ll also note that the COVID pandemic totally screwed with lots of regular preventative service/well visits, so the gaps between normal care could be longer in 2021-2022, that what we may have seen previously. (Anyone in the community have a database of dental visits to plot this out? )
The decision here effectively amounts to a bias / variance tradeoff. A shorter ‘prior observation’ value will increase the chance that you are pulling in ‘prevalent’ cases into your ‘incident’ case definition, which means you’ll have greater index date misspecification. But, you’ll also have a larger sample size which will increase your statistical power for whatever question you are trying to answer (which is the argument I most often here, when people like to diddle around with this number from 365d to 180d). A longer prior observation window will increase your confidence that cases are truly incident, but then you may actually be excluding some ‘true incident’ cases simply because they don’t enough historical data.
I do think some empirical investigation could be do into looking at the impact of this design choice. Off the top of my head, I think you’d probably start by creating some evaluation set of persons who did have some extended observation period time (like, for argument sake, 10 years). Then you’d apply phenotypes with different prior observation period lengths within that subset, and you’d be able to compare the resulting patient sets. I don’t have any intuition for how big an issue this actually is, but my initial gut is that 365d could be a bit low for what we may want when services involve annual check-ups and patients may miss or delay a follow-up visit.