Combination of Family History Disease and Person Concepts Enhances the Coverage of Observational Medical Outcome Partnership Common Data Model Mapping in Family History Information

Sunyoung Yoon B.S^{*1,2}, Won Chul Cha M.D., Ph.D^{*1,2,3}, Mira Kang M.D., Ph.D^{*1,4}

*1) Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), sungkyunkwan University, Seoul

- *2) Smart Health Lab, Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), sungkyunkwan University, Seoul
- *3) Department of Emergency Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
- *4) Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul

- ^{01.} Introduction
- ^{02.} Methods
- ^{03.} Results
- ^{04.} Conclusions
- ^{05.} Reference & Acknowledgement

Introduction

Family History (FH)

Clinical care : early intervention or prevention of disease Precision medicine : gateway for decision for genetic test & interpretation minimal relative range for genetic test interpretation : first-degree & second-degree relative

OMOP-CDM

Observational Medical Outcome Partnership Common Data Model standardized clinical data + extension genetic data + FH great based for multicenter prediction or Machine learning research project

Conventional FH mapping method in OMOP CDM

CDM table : Observation table vocabulary mapping : ATHENA (https://athena.ohdsi.org/)

	Priority	е	Example
No	contents	Concept_id	NAME
1 st	FH of disease in person	4215667	Family history of diabetes mellitus in first degree relative
2 nd	FH of disease	4051114	Family history of diabetes mellitus

rt Health Lab Table 1. conventional mapping process example

Introduction

ATHENA's FH related code search result

Only 51 code have both 'FH of disease' and 'in person'

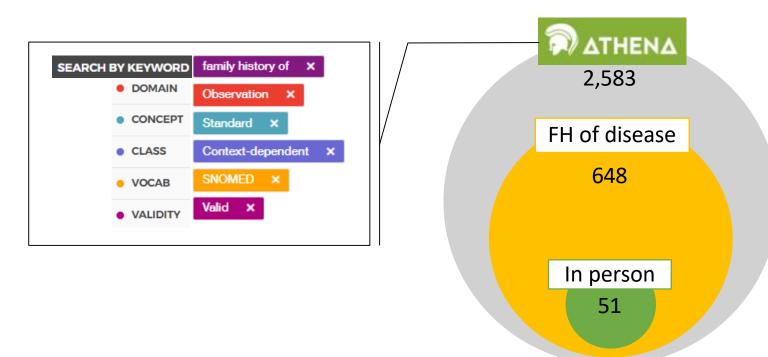


Figure 1. ATHENA's Family History related code search process

Introduction

Previous research

All of us data's Family History

Convert FH of disease and person to observation_concept_id separately

disadvantage : multiple FH of disease & person data -> difficult in accurately connecting disease and person

Aim of this study

Comparison of Conventional mapping method and New mapping method in single center medical check-up's family history survey data conversion.

new method : FH of disease \rightarrow observation_concept_id

in person

➔ qualifier_concept_id

CDM Field	User Guide	ETL Conventions
observation_concept_id	The OBSERVATION_CONCEPT_ID field is recommended for primary use in analyses, and must be used for network studies.	The CONCEPT_ID that the OBSERVATION_SOURCE_CONCEPT_ID maps to. There is no specified domain that the Concepts in this table must adhere to. The only rule is that records with Concepts in the Condition, Procedure, Drug, Measurement, or Device domains MUST go to the corresponding table.
qualifier_concept_id	This field contains all attributes specifying the clinical fact further, such as as degrees, severities, drug-drug interaction alerts etc.	Use your best judgement as to what Concepts to use here and if they are necessary to accurately represent the clinical record. There is no restriction on the domain of these Concepts, they just need to be Standard.

Methods

Single center Family history survey data

Tertiary general hospital's medical check-up Family history survey data (2001.01.02 ~ 2016.07.01) 191,619 patient – 414,616 visit – 65,538,457 data

Total 436 category

	Family history category
Cancer	Stomach, Breast, Colorectal, Lung, Uterine, Liver, Thyroid, Ovarian, Cervical, Gallbladder / Biliary tract, Bladder, Esophageal, prostate, pancreas, others
Chronic	Hypertension, Diabetes mellitus, Chronic hepatitis/Liver cirrhosis, Asthma / Chronic obstructive pulmonary disease (COPD)
Congenital	Congenial Heart disease, Cleft lip or palate, other congenital malformation
Cardiovascular	Stroke, Myocardial Infarction (MI), Angina, MI / Angina
Other	Dementia, Tuberculosis
Yes or No	
First degree	Father, Mother, Sibling, Child
Second degree	Paternal grandfather, Paternal grandmother, Maternal grandfather, Maternal grandmother
	Chronic Congenital Cardiovascular Other Yes or No First degree

Mapping

vocabulary : SNOMED CT

New methods in person mapping

ID	CODE	NAME	CLASS	CONCEPT	VALIDITY	DOMAIN	VOCAB
40478917	444295003	Father of subject	Social Context	Standard	Valid	Relationship	SNOMED
40478925	444301002	Mother of subject	Social Context	Standard	Valid	Relationship	SNOMED
40478926	444302009	Sibling of subject	Social Context	Standard	Valid	Relationship	SNOMED
40485452	444192005	Child of subject	Social Context	Standard	Valid	Relationship	SNOMED
40478914	444292000	Paternal grandfather of subject	Social Context	Standard	Valid	Relationship	SNOMED
40478915	444293005	Paternal grandmother of subject	Social Context	Standard	Valid	Relationship	SNOMED
40485508	444243006	Maternal grandfather of subject	Social Context	Standard	Valid	Relationship	SNOMED
40485509	444244000	Maternal grandmother of subject	Social Context	Standard	Valid	Relationship	SNOMED

Figure 4. List of 8 codes used by the new method to map 'in person'

Figure3. Family history survey category

Methods

 Conventional 						
Manning		ID		NA	ME	
Mapping	Observation_concept_id	4215667	Family hist	ory of diabetes mellit	us in first degree relative	
		Grade	9		Reason	
Assessment	Disease	Equivalent		Exactly match		
	Person	Informatio	n loss	Uphill-mapping (father $ ightarrow$ first degree relative)		
New]					
		ID		N	IAME	
Mapping	Observation_concept_id	4051114	Family h	nistory of diabetes me	ellitus	
	Qualifire_concept_id	40478917	Father c	of subject		
		Grad	e		Reason	
Assessment	Disease	Equiva	lent	Exactly match		
	Person	Equiva	lent	Exactly match		

Compare the 2 method

Assessment grade count (disease & person) the number of observation_concept_id used the number of expressible data count

Assessment					
Grade	Criteria				
Equivalent concept	Exactly match				
	Uphill (Broad) -mapping				
Information Loss	No person information				
	Disease code not exist				

Figure 5. Two method's mapping & assessment process example

Family history of diabetes mellitus : father, YES

Results

• **310** category is mapped from total 436 category

126 category that could not mapped (28.9% of total category, 51.3% of data count) Reason : Not exist the 'No family history of disease' code

The number of observation_concept_id used

conventional mapping : 49 concept_id
new mapping : 41 concept id (49 concept id : when 8 'in person' concept id included)

- Disease information assessment grade comparisons
 - The two methods showed the same results. Information Loss was 18.7% of total category
 - 1 survey question asked 2 related disease
 - 1 survey question asked 1 disease but the exactly match disease concept was not found

Disease Assessment category count						
As	sessment	Method				
Grade	Criteria	Conventional	New			
Equivalent concept	Exactly match	238	238			
	Uphill (Broad) -mapping	72	72			
Information Loss	No person information	0	0			
	Disease code not exist	126	126			
	Sum	436	436			

Figure 6. Disease information assessment grade result of two methods

Person information assessment grade comparisons

Pei	rson Assessment catego	ry count		Person Assessment data coverage count				
As	Assessment			Ass	essment	Method		
Grade	Criteria	Conventional New		Grade	Criteria	Conventional	New	
Equivalent concept	Exactly match	0	310	Equivalent concept	Exactly match	0 (0 %)	31,902,648 (100%)	
	Uphill (Broad) -mapping	21	0	Information Loss	Uphill (Broad) -mapping	140,923 (0.4%)	0 (0 %)	
Information Loss	No person information	289	0		No person information	31,761,725 (99.6%)	0 (0 %)	
	Sum		310		Sum	31,902,648 (100 %)	31,902,648 (100 %)	

Figure 7. person information assessment grade result of two methods

- Code not exist was excluded to compare
- New method can make it possible to 100% equivalent mapping
- But conventional method resulted in all 'in person' information loss only 0.4% data was possible to uphill / Broad mapping 99.6% information loss in conventional method

- New FH mapping method is possible to **minimize** 'in person' information loss → more accurate
 - New method showed 0 % of 'in person' information loss
 - Conventional method result in 100% information loss and show only 0.4% of uphill(broad) mapping is possible
- Unbalance of 'in person' and disease in single code expression

4)	su	rvey example	Father	mother	children	Sibling	paternal grandfather	paternal grandmother	maternal grandfather	maternal grandmothe	r
	family histor	y of breast cancer; YES									
	ID					NAME					
	4210263	Family history of neoplas	m of bre	east							
	46270155	Family history of maligna	nt neop	lasm of b	<mark>reast</mark> diag	nosed b	efore 45 years	of age			Exact disease
	46270130	Family history of maligna	nt neop	lasm of b	<mark>reast</mark> in fi	rst degre	ee relative less	than 50 years	of age		But
	42535025	Family history of maligna	<mark>nt neop</mark>	lasm of b	<mark>reast</mark> at u	nder <mark>age</mark>	e 50 in second	degree relative	9		
	35624517	Family history of maligna	nt neop	lasm of b	<mark>reast</mark> at u	nder <mark>age</mark>	e 50 in second	l degree female	e relative		Too specific 'in person' criteria
	4051257	FH: Father alive with prob	olem			٦					
	4051704	FH: Mother alive with pro	blem				Fyar	t 'in person'	,		
	4051259	FH: Sister alive with prob	lem					specific dise			
	4052797	FH: Son alive with proble	m				Βυι Ποι		ease		
	4054435	FH: Daughter alive with p	oroblem			J					

Figure 8. Example of information unbalance code

- Conventional method is complex & Labor intensive
 - Conventional method is need to multiple search process for proper concept_id

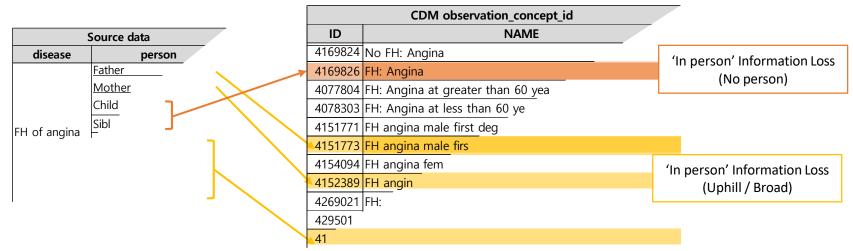


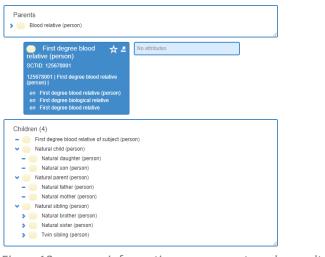
Figure 9. Example of conventional mapping process

- New FH mapping method is **simpler** process → more efficient
 - The new method once mapped 'in person' concept_id from the source data, then only a single search process for the proper disease concept_id

						CDM observation_concept_id
				1	ID	NAME
	Source data		CDM qualifier_concept_id		4169824	No FH: Angina
disease	person	ID	NAME	,	4169826	FH: Angina
	Father	40478917	Father of subject			FH: Angina at greater than 60 yea
	Mother	40478925	Mother of subject			
	Child	40485452	2 Child of subject			FH: Angina at less than 60 ye
	Sibl	40478926	Sibling of subject			FH angina male first deg
FH of angina	F	40478914	Paternal grandfather of subject			FH angina male firs
		40478915	Paternal grandmother of subject		4154094	FH angina fem
		40485508	Maternal grandfather of subject		4152389	FH angin
		40485509	Maternal grandmother of subject		4269021	FH:
			All Equivalent mapping		429501 41	-

Figure 10. Example of new mapping process

- New method is possible to **more detailed** relative information expression
 - if source data is possible
 - 194 concept_id family relative information in ATHENA's SNOMED CT vocabulary
 - 34 concept_id representing first & seoncd-degree relative information
- Source data's broad questions are also expressible


ID	NAME
40571962	Adopted child
40571964	Adopted daughter
40567976	Adopted son
4077009	Adoptive brother
4264648	Adoptive father
4225414	Adoptive grandfather
4136361	Adoptive grandmother
4331173	Adoptive grandparent
4068928	Adoptive mother
4224702	Adoptive parent
4196190	Adoptive sibling
4294846	Adoptive sister

ID	NAME
44783070	Second degree blood relative
4050684	Half-sibling
4187654	Half-brother
36714504	Maternal half brother
36714501	Paternal half brother
4331453	Half-sister
36714503	Maternal half sister
36717756	Paternal half sister
4301632	Natural grandparent
4265919	Natural grandfather
4077002	Natural grandmother

ID	NAME
4053607	First degree blood relative
4326600	Natural child
308126	Natural daughter
4014096	Natural son
4029630	Natural parent
4321888	Natural father
4277283	Natural mother
4218412	Natural sibling
4263682	Natural brother
4217930	Twin brother
4218588	Fraternal twin brother
4299961	Identical twin brother
4251326	Natural sister
4000174	Twin sister
4106384	Fraternal twin sister
4173558	Identical twin sister
4013484	Twin sibling
4196733	Fraternal twin
4010423	Fraternal twin sibling
4193698	Identical twin
4031588	Identical twin sibling
4217930	Twin brother
4000174	Twin sister

Figure11. Example code of family relative information

The parent-children relationship of SNOMED CT's relative code is made free to study in unconstraint on the diversity of family relations information investigated by various organizations.

 $\label{eq:Figure12} Figure 12 \ . \ person information \ assessment \ grade \ result \ of \ two \ methods$

 This study is based on medical check-up family history survey data from a single institution, So actual CDM data conversion and multicenter study was required.

Reference

1. Bennett R. L. (2019). Family Health History: The First Genetic Test in Precision Medicine. The Medical clinics of North America, 103(6), 957–966.

Cronin, R. M., Halvorson, A. E., Springer, C., Feng, X., Sulieman, L., Loperena-Cortes, R., Mayo, K., Carroll, R. J., Chen, Q., Ahmedani, B. K., Karnes, J., Korf, B., O'Donnell, C. J., Qian, J., & Ramirez, A. H. (2021). Comparison of family health history in surveys vs electronic health record data mapped to the observational medical outcomes partnership data model in the All of Us Research Program. Journal of the American Medical Informatics Association : JAMIA, 28(4), 695–703.

Acknowledgement

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20005021)

This work was supported by the Technology Innovation Program (20005021, Establishment of Standarization and Anonymization Guideline Based on Common data model), funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea)

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(<u>20011642</u>) This work was supported by the Technology Innovation Program (<u>20011642</u>, CDM based algorithm treatment protocol service system development and spread), funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea)

Thank you

