

Introducing the CostUtilization Package: Standardizing Health Economic Analysis in OHDSI

Alpha Release Overview

Audience: OHDSI HEVA Workgroup

Date: October 2025

The Need for Standardized Economic Analysis

Challenge:

- Methodological Opacity: HEOR studies often rely on ad hoc, custom SQL implementations, hindering reproducibility and validation.
- Semantic Ambiguity: Inconsistent definitions of "Cost," "Charge," and "Payment" lead to incomparable results across the network.
- Integration Gap: Difficulty in integrating economic outcomes seamlessly into standard OHDSI analytical pipelines (e.g., CohortMethod, PLP).

Vision:

- To enable "actuarial-quality" economic analysis at scale across the OHDSI network.
- Provide a HADES-conformant tool that standardizes the feature engineering of cost and utilization metrics.
- Transform health economics from a siloed activity into a standard component of OHDSI evidence generation.

What is the CostUtilization Package?

Key Features of the R Package

- 1. Complies with HADES standards for cost metrics
- 2. Connects to OMOP CDM databases
- 3. Executes optimized SQL queries for cost calculation
- 4.Outputs might be standardized OHDSI covariateData objects
- 5. Uses validated SQL logic for CDM version 6.0
- 6.Applies visit-centric analytical framework
- 7. Supports diverse cost analysis applications

Alpha Release Status and The Path Forward

Current Status: Alpha Release

- Core architecture and foundational logic are implemented.
- Testing is currently restricted to simulated data.
- Not ready for general use due to external dependencies.

Critical Dependencies (The Blockers):

- OMOP CDM v5.5 (Pending Approval):
- The package relies exclusively on the normalized COST table structure proposed in CDM v5.5 (reintegrated from v6.0).
- This structure uses cost_concept_id (meaning) and cost_type_concept_id (provenance) for essential flexibility.

Themis Conventions (Pending Finalization):

- Standardized semantic meaning of cost data is essential for "actuarial-quality" results.
- The package assumes conformance to these conventions (e.g., standardized currency).

Architecture and Design Philosophy

HADES Conformant Structure:

- R/: User-facing functions (e.g., calculateCostOfCare()).
- Handles connection, parameterization, and output formatting.
- inst/sql/: The core analytical engine.
- A large, parameterized SQL script.

Why a Standalone Package?

- FeatureExtraction uses "hyper-parameterized" SQL for many simple clinical features.
- CostUtilization requires a more monolithic, "opinionated" SQL optimized for the complexities of the normalized COST table.
- Direct integration was challenging due to these fundamental differences in SQL architecture.

The Integration Strategy:

• The output might be structurally identical to *FeatureExtraction's* output (the *covariateData* object).

Seamless Integration with the HADES Workflow

Workflow Integration:

- 1. Define Cohorts (Atlas)
- 2. Generate Features
- FeatureExtraction (Clinical Covariates) covariateData
- CostUtilization (Economic Covariates) covariateData or other generic output
- 3. Combine (rbind/union) (in progress)
- 4. Execute Analysis
- CohortMethod
- PatientLevelPrediction
- Characterization

The Analytical Pattern: A Modular, Visit-Centric Approach

Design Principle:

- Costs must be anchored to clinical context.
- A cost without a visit occurrence id is considered uninterpretable and is excluded.

The Standardized Query Pattern (Based on Technical Tutorial):

Step 0: Calculate Denominator (Person-Time at Risk)

Accurately censor observation time using OBSERVATION PERIOD to avoid bias.

Step 1: Identify Relevant Encounters (The Anchor)

- Select VISIT OCCURRENCE records within the analysis window.
- Apply filters (e.g., by visit type, or by clinical events occurring during the visit).

Step 2: Link Encounters to Costs (The Numerator)

- Join to the COST table using visit occurrence id.
- Filter by cost concept id (e.g., Allowed Amount) and currency concept id.

Step 3: Calculate Standardized Rates

• Combine Numerator and Denominator (e.g., Cost PPPM).

Analytical Flexibility: From Broad to Granular Costing (Visit-Level)

Visit Cost Scenarios and Adjustments

- 1. Base Case: Overall care cost for all settings
- 2. Encounter Type: Costs for specific visit types
- 3. Event-Based: Expenses for visits with designated events
- 4. Concurrent Events: Costs for visits with multiple events
- 5. Note: Cost includes entire visit for all scenarios

Advanced Use Case: Scenario 5 - Micro-Costing

Objective:

• Isolate the specific line-item cost of an intervention itself, rather than the cost of the entire visit.

Use Case:

• Essential for Health Technology Assessments (HTA) or detailed economic evaluations (e.g., the cost of the chemotherapy drug itself).

Prerequisites:

- VISIT_DETAIL table must be populated.
- Costs must be attributed at the line level using visit_detail_id in domain tables AND the COST table.

Logic Shift:

- The analysis shifts focus from VISIT_OCCURRENCE to VISIT_DETAIL.
- The COST table is joined via visit_detail_id.
- Requires filtering the COST table to ensure the cost is linked to the VISIT_DETAIL domain (using cost_event_field_concept_id).

Ensuring Reliability: The Testing Framework

The Challenge:

• The standard OHDSI test dataset (Eunomia) does not contain COST data, nor does it conform to CDM v5.5.

The Innovation: On-the-Fly Data Generation

The package's test suite dynamically generates a compliant test environment:

- Establish standard Eunomia environment.
- Programmatically create the CDM v5.5 COST table structure.
- Synthesize and inject cost data, linked relationally to existing Eunomia visits.
- Execute unit tests and validate outputs.

Path to HADES Conformance:

- In Progress: Finalizing unit tests to achieve high code coverage.
- Automated: Continuous Integration (CI) via GitHub Actions ensures stability.
- Future: Real-world validation against production CDM v5.5 datasets (essential for Beta release).

Challenges and Community Adoption

Key Challenges:

- Standards Adoption (CDM v5.5/Themis):
- The primary blocker. Adoption is required before the package can be widely used or validated.
- Data Quality and Conformance:
- Real-world cost data is complex.
- The package will eventually include built-in checks to enforce Themis conformance and may halt execution if data is non-conformant.
- International Applicability:
- The current logic, while proven, needs validation against diverse international reimbursement models.

Adoption Strategy:

- Positioning the package as the reference implementation of the HEVA workgroup's proposed standards.
- Actively seeking early adopter partners to test and validate the package on real-world data.

Conclusion and Call to Action

Summary:

- The **CostUtilization** package offers a standardized, HADES-compliant framework to elevate the quality and reproducibility of health economic analysis in OHDSI.
- A Call to Action for the HEVA Workgroup:
- • Engage in Standards Development:
- Your active participation in finalizing CDM v5.5 and Themis conventions is critical.
- • Review the Code:
- The alpha release branch is public. We welcome your technical feedback on GitHub.
- github.com/OHDSI/CostUtilization (alpha_release branch)
- • Become an Early Tester:
- Do you have cost data? Are you planning to migrate to CDM v5.5?
- Let's partner to test and validate this tool.

Q&A