Representing Surgeries, Pathology Procedures and Pathology Reports Sections in OMOP

Michael Gurley
m-gurley@northwestern.edu
Northwestern Applied Research Informatics Group
5/17/2019

NMEDW:
Daniel Schneider
Prasanth Nannapaneni
Martin Borsje

Northwestern
Background: MBTI Data Capture Tool

- The Northwestern Malnati Brain Tumor Institute outcomes/research database: The MBTI Data Capture Tool (MBTI-DCT).
- Backed by a custom ETL/data mart within the Northwestern Enterprise Data Warehouse (NMEDW) (Microsoft SQL Server and SQL Server Integration Services).
- Aggregates data from Northwestern Medicine’s (NM) clinical systems: Epic (Outpatient), Cerner (Inpatient, Surgery, Pathology, Radiology) and MOSAIQ (Radiation Oncology).
- Custom data model.
- Incremental loads of the custom ETL/data mart into a PostgreSQL database via SQL Server Reporting Services (SSRS) exposed as SOAP Web Services.
- The MBTI-DCT includes an NLP-aided chart abstraction user interface for the curation of non-discrete data points from clinical narratives:
 - Anatomic site/histology, WHO grade, recurrence status, pathology findings from pathology reports.
 - Extent of Resection from surgical procedure reports.
 - Anatomical target of radiotherapy from radiation oncology summaries.
 - Performance status declarations, outside treatments from clinic progress notes.
 - Recurrence/progression declarations from imaging exam reports.
- Ruby on Rails user interface. Custom NLP pipeline using the Stanford NLP Java Library and Lingscope.
Data Earthquake
Change Happens

• NM merged with other hospital(s).

• Large project to migrate three Epic instances into one instance.

• NM migrated from using Cerner Surginet for tracking surgeries to Epic.

• NMEDW deprecated legacy traditionally modeled “Integrated Data Structures” to new fact/dimension modeled “Integrated Data Structures”.

• Programmatic access to SSRS reports via SOAP services was disabled.
Remediation Choice

• All this change broke the MBTI-DCT.

• The custom ETL/data mart’s flow of new data stopped because of reliance on deprecated structures and data access strategies.

• Decision:
 • Remediate the ETL’s population of the custom data model.

 OR

 • Replace the custom data model with a common data model (CDM) and remediate the MBTI-DCT UI and application logic to work with a CDM.

• All of Us and eMerge CDM activities were ramping up around this time. Laying the ground work for NM investing in transforming its NMEDW into the OMOP CDM.
Choose OMOP: Challenges

- We decided to remediate the MBTI-DCT UI and application logic to work with the OMOP CDM.
- Challenges:
 - Representing PHI.
 - Include all surgeries in the OMOP instance.
 - Include all pathology procedures in the OMOP instance.
 - Include all pathology reports sections in the OMOP instance.
 - Preserve and represent references between surgeries, pathology procedures and pathology report sections.
 - De-duping surgeries and pathology procedures.
 - Work with a truncate/reload data refresh model. Our abstraction/NLP output/curation tables need stable structures to hang off of across data reloads.
 - Remediating MBTI-DCT UI to work with the OMOP CDM.
Challenge: PHI

• The MBTI-DCT displays PHI. The display of PHI within the MBTI-DCT is necessary to meet curation and outcomes use cases.

• Solution: adopted and reused the PHI table specified and populated for the All of Us project.

 • pii_address
 • pii_email
 • pii_mrn
 • pii_name
 • pii_phone_number
Challenge:
Include all surgeries

- Validate that surgeries were *not* being included in the current OMOP build.
- Surgeries at NM are tracked in the new consolidated Epic instance.
- For Epic, the current OMOP build was populating the PROCEDURE_OCCURRENCE table exclusively from charge-oriented tables:
 - HSP_ACCT_PX_LIST
 - HSP_ACCT_CPT_CODES
 - HSP_TRANSACTIONS
 - ARPB_TRANSACTIONS
- Asked the NEMEDW OMOP data architect team to pull from actual Epic surgery tables:
 - or_log
 - or_log_all_proc
 - or_proc
 - or_proc_cpt_id
- Automatic mapping to Procedure domain standardized vocabulary entries was achieved by using the or_proc_cpt_id.real_cpt_code field.
Opinion Sidebar:
Prefer Small (accurate) Data over Big (messy) Data

- Simple Determinism is better than Clever Probabilism.
- If a source system represents a class of clinical events in a discrete manner to support a clinical workflow (like Epic does for surgeries), prefer this canonical representation to the clinical event welter caused by charge-oriented representations.

- Open question:
 - Exclude charge-related representations?
YEAH, WELL, YOU KNOW,

THAT'S JUST, LIKE,
YOUR OPINION, MAN.
Challenge:
Include all pathology procedures

- Validate that pathology procedures were **not** being included in the current OMOP build.
- Pathology procedures at NM are tracked in Cerner Pathnet Anatomic Pathology.
- For Cerner, the current OMOP build was populating the `PROCEDURE_OCCURRENCE` table from charge-oriented tables:
 - encounter (from Cerner)
 - EPSI charge tables
- Asked the NEMEDW OMOP data architect team to pull from actual Cerner Pathnet Anatomic Pathology tables:
 - `pathology_case`
 - `prefix_group`
 - `case_specimen`
 - `case_report`
 - `clinical_event`
 - `ce_blob`
- Made mappings from local `prefix_group` entries to standardized Procedure domain entries in the SNOMED vocabulary. Mostly along this axis: Procedure | Laboratory Procedure (procedure) | Anatomic Pathology Procedure. See spreadsheet.
- Need to map local Cerner `case_specimen` specimen codes to the Specimen domain entries in the SNOMED vocabulary.
Challenge:
Include all pathology reports sections in the OMOP instance.

- Validate that pathology reports sections were being included in the current OMOP build as separate entries in the NOTE table with the section name populating the note_title field.

- Pathology reports sections at NM are tracked in Cerner Pathnet Anatomic Pathology.

- Pathology reports are written in ‘sections’. Each section having a dedicated purpose. For example: ‘Final Diagnosis’, ‘Microscopic Description’, ‘Specimen/Gross Description’ and ‘Clinical Information’.

- Most often the data points desired to be extracted from a pathology report reside in the ‘Final Diagnosis’ section.

- Other ‘sections’ can often be the source of false positives for NLP pipelines. For example, historical diagnoses mentioned in the ‘Clinical Information’ section.

- Simple Determinism is better than Clever NLP.

 - If a source system splits a pathology reports into discrete labeled sections to support a clinical workflow (like Cerner does for pathology reports), prefer this canonical representation instead of a multi-section conglomerated representation.

- Don’t use the sectionizing component of your NLP pipeline if your source system sectionizes for you.
Challenge:
Preserve and represent references between surgeries, pathology procedures and pathology report sections.

- Validate that references between surgeries, pathology procedures and pathology report sections were NOT being included in the current OMOP build.

- The conventional advice to tie OMOP clinical events by joining to VISIT_OCCURRENCE is insufficient.
 - Possible for one VISIT_OCCURRENCE to span multiple surgery entries and multiple pathology procedures in PROCEDURE_OCCURRENCE.
 - Possible for one VISIT_OCCURRENCE entry to span multiple pathology reports.

- Make explicit references between surgical PROCEDURE_OCCURRENCE entries and pathology PROCEDURE_OCCURRENCE entries via FACT_RELATIONSHIP.
 - Asked the NEMEDW OMOP data architect team to build a join table within the NMEDW integrated data structures associating Cerner pathology procedures and Epic surgeries. Match on patient and surgery date to pathology accession date/case collection date. ETL the join table into the OMOP FACT_RELATIONSHIP table

- Make explicit references between pathology report section NOTE entries and pathology PROCEDURE_OCCURRENCE entries via FACT_RELATIONSHIP (we are not on OMOP CDM version yet where this can be done directly within the NOTE table with note_event_id and note_event_field_concept_id).

- Asked the NMEDW OMOP data architect team to build a join table within the NMEDW integrated data structures associating Cerner pathology procedures and Cerner pathology report sections. ETL the join table into the OMOP FACT_RELATIONSHIP table
FACT_RELATIONSHIP

- Entry between pathology report section in NOTE and pathology procedure in PROCEDURE_OCCURRENCE:
 relationship_concept_id = 44818790
 ‘Has procedure context (SNOMED).’ Plus converse entry.

- Entry between pathology procedure in PROCEDURE_OCCURRENCE and surgery in PROCEDURE_OCCURRENCE:
 relationship_concept_id = 44818888
 ‘Procedure context of (SNOMED)’ Plus converse entry.
Challenge:
De-duping surgeries and pathology procedures

• Entries in FACT_RELATIONSHIP allow us to surface these clinical events from the morass of charge-related representations for the same clinical events. Enabling de-duplication.

• Would be nice if OMOP natively contained some kind of way of designating entries in the PROCEDURE_OCCURRENCE table as canonical or first-class versus entries that are financial echoes of the same clinical events.
Challenge: Work with a truncate/reload data refresh model.

- New load strategy:
 - Replacement of programmatic access to data via SSRS.
 - NMEDW has a single OMOP instance that is partitioned during extraction by a cohort definition for the MBTI.
 - The NMEDW extract framework deposits files on a shared folder mounted to the MBTI-DCT application server.
 - Incremental loads not feasible.

- Stable Identifiers
 - OMOP internal IDs change across truncate/reload data refreshes.
 - Our abstraction/NLP output/curation tables need stable structures to hang off of across data reloads.
 - Asked the NEMEDW OMOP data architect team to populate stable identifier tables for NOTE and PROCEDURE_OCCURRENCE.
 - The stable identifier tables contains an invariant ‘id’ column that stays stable across loads, an OMOP internal id column (‘note_id’, ‘procedure_occurrence_id’) that changes across loads and invariant pointers to source-system row-level provenance via the ‘stable_identifier_path’ and ‘stable_identifier_value’ columns.
NOTE_STABLE_IDENTIFIER

CREATE TABLE public.note_stable_identifier
(
 id bigint NOT NULL DEFAULT nextval('note_stable_identifier_id_seq '::regclass),
 note_id bigint NOT NULL,
 stable_identifier_path character varying NOT NULL,
 stable_identifier_value character varying NOT NULL,
 CONSTRAINT note_stable_identifier_pkey PRIMARY KEY (id)
)
CREATE TABLE public.procedure_occurrence_stable_identifier
(
 id bigint NOT NULL DEFAULT nextval('procedure_occurrence_stable_identifier_id_seq'::regclass),
 procedure_occurrence_id bigint NOT NULL,
 stable_identifier_path character varying NOT NULL,
 stable_identifier_value_1 character varying NOT NULL,
 stable_identifier_value_2 character varying,
 stable_identifier_value_3 character varying,
 stable_identifier_value_4 character varying,
 stable_identifier_value_5 character varying,
 stable_identifier_value_6 character varying,
 CONSTRAINT procedure_occurrence_stable_identifier_pkey PRIMARY KEY (id)
)
Challenge:
Remediating MBTI-DCT UI to work with the OMOP CDM
Index Page

• Legacy MBTI-DCT UI was based on a custom data model. Each type of note targeted for NLP-aided chart abstraction had its own dedicated table: pathology reports, imaging exam reports, clinic progress notes and radiation oncology summaries. Each note type had its own dedicated index and edit page.

• Index Page

• Remediate one index screen to display notes needing curation by abstraction ‘namespaces’. A ‘namespace’ ties an event cohort defined by search criteria (for example, a ‘Surgical Pathology’ namespace that binds to all ‘Final Diagnosis Section’ notes related to ‘Surgical pathology procedure’ procedure occurrences) to a set of NLP-suggestible/abstractable/curatable data points (‘Site’, ‘Histology’, ‘WHO Grade’, ‘IDH1 Status’, ‘p53’).

• Remediate the index screen to allow for searching:
 • By keyword search across OMOP PHI tables and the note text.
 • By note date.
 • By providers associated with a first level procedures (for example, pathology procedures) and second level procedures (for example, surgeries).
Challenge:
Remediating MBTI-DCT UI
to work with the OMOP CDM
Edit Page

• Edit Page
 • Remediate the edit screen to display data from the OMOP PHI tables.
 • Remediate the edit screen to display the list of abstractable data points for a note based on the set of abstractable data points bound to a ‘namespace’.
 • Remediate the edit screen to display associated first level and second level procedures.
 • Remediate the edit screen to display other note entries associated to first level procedures (for example, all other “sections” of the current pathology report section)
Northwestern MBTI Data Capture Tool

Notes

<table>
<thead>
<tr>
<th>Note Date</th>
<th>Note Type</th>
<th>Note Title</th>
<th>First Name</th>
<th>Last Name</th>
<th>MRN(s)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/1900</td>
<td>Note</td>
<td>Final Diagnosis</td>
<td>Bob</td>
<td>Jones</td>
<td>Northwestern 0000000000</td>
<td>Review</td>
</tr>
<tr>
<td>01/01/1900</td>
<td>Note</td>
<td>Final Diagnosis</td>
<td>Bob</td>
<td>Jones</td>
<td>Northwestern 0000000000</td>
<td>Review</td>
</tr>
<tr>
<td>01/01/1900</td>
<td>Note</td>
<td>Final Diagnosis</td>
<td>Bob</td>
<td>Jones</td>
<td>Northwestern 0000000000</td>
<td>Review</td>
</tr>
<tr>
<td>01/01/1900</td>
<td>Note</td>
<td>Final Diagnosis</td>
<td>Bob</td>
<td>Jones</td>
<td>Northwestern 0000000000</td>
<td>Review</td>
</tr>
</tbody>
</table>
Note

<table>
<thead>
<tr>
<th>Patient</th>
<th>MRN(s): Northwestern</th>
<th>Note Date</th>
<th>Note Type</th>
<th>Note Class</th>
<th>Title</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob N Jones</td>
<td>0000000000</td>
<td>01/01/1900</td>
<td>Note</td>
<td>No matching concept</td>
<td>Final Diagnosis</td>
<td></td>
</tr>
</tbody>
</table>

Procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Date</th>
<th>Provider</th>
<th>Specimens</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical pathology procedure</td>
<td>01/01/1900</td>
<td>HORBINSKI, CRAIG M.</td>
<td></td>
<td>VIEW</td>
</tr>
<tr>
<td>Cranectomy, trephination, bone flap craniotomy; for excision of meningioma, supratentorial</td>
<td>01/01/1900</td>
<td>CHANDLER, JAMES P.</td>
<td></td>
<td>VIEW</td>
</tr>
</tbody>
</table>

Notes

- View Specimen/Gross Description
- View Intraprocedural Consultation Findings
- View Clinical Information
- View Surg Path Non-Chartable Comment
- View Addendum
Note text

A and B. Tumor, cerebellum, resection: Metastatic adenocarcinoma (see Note).

Note: This tumor shows tall columnar cells with lumenal necrosis, the combination of which is a classic hallmark of colorectal adenocarcinoma.
Note text

A and B. Tumor, cerebellum, resection:
Metastatic adenocarcinoma (see Note).

Note: This tumor shows tall columnar cells with lumenal necrosis, the combination of which is a classic hallmark of colorectal adenocarcinoma.
Future

• Change and Challenges:

• Need to incorporate into our OMOP instance legacy surgeries from Cerner Surginet.

• Need to incorporate into our OMOP instance pathology procedures from a Cerner Co-Path instance to be loaded into our NMEDW.

• Need to incorporate into our OMOP instance pathology procedures from a pending migration to Epic Beacon.

• Improving our NLP algorithms. Not an NLP programmer. NLP pipeline has a RESTful interface that can delegate the generation of suggestions for a document and namespace to an endpoint and receive back suggestions via a endpoint. So better NLP can be used.

• Opensource the user interface and NLP pipeline as “OMOP Abstractor”.

Thanks!