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Abstract

Background and purpose

Hemorrhagic transformation (HT) after cerebral infarction is a complex and multifactorial

phenomenon in the acute stage of ischemic stroke, and often results in a poor prognosis.

Thus, identifying risk factors and making an early prediction of HT in acute cerebral infarc-

tion contributes not only to the selections of therapeutic regimen but also, more importantly,

to the improvement of prognosis of acute cerebral infarction. The purpose of this study was

to develop and validate a model to predict a patient’s risk of HT within 30 days of initial ische-

mic stroke.

Methods

We utilized a retrospective multicenter observational cohort study design to develop a

Lasso Logistic Regression prediction model with a large, US Electronic Health Record data-

set which structured to the Observational Medical Outcomes Partnership (OMOP) Common
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Data Model (CDM). To examine clinical transportability, the model was externally validated

across 10 additional real-world healthcare datasets include EHR records for patients from

America, Europe and Asia.

Results

In the database the model was developed, the target population cohort contained 621,178

patients with ischemic stroke, of which 5,624 patients had HT within 30 days following initial

ischemic stroke. 612 risk predictors, including the distance a patient travels in an ambulance

to get to care for a HT, were identified. An area under the receiver operating characteristic

curve (AUC) of 0.75 was achieved in the internal validation of the risk model. External valida-

tion was performed across 10 databases totaling 5,515,508 patients with ischemic stroke, of

which 86,401 patients had HT within 30 days following initial ischemic stroke. The mean

external AUC was 0.71 and ranged between 0.60–0.78.

Conclusions

A HT prognostic predict model was developed with Lasso Logistic Regression based on rou-

tinely collected EMR data. This model can identify patients who have a higher risk of HT

than the population average with an AUC of 0.78. It shows the OMOP CDM is an appropri-

ate data standard for EMR secondary use in clinical multicenter research for prognostic pre-

diction model development and validation. In the future, combining this model with clinical

information systems will assist clinicians to make the right therapy decision for patients with

acute ischemic stroke.

Background and purpose

Hemorrhagic transformation (HT) is a complication of ischemic stroke that occurs after clini-

cal therapy and is often associated with increased mortality and disability[1]. HT includes

symptomatic hemorrhages that are associated with clinical worsening and those that are

asymptomatic. Following ischemic stroke, the total reported spontaneous HT occurrence

ranges from 3.2% (11/624) to 43.3% (61/310) and symptomatic HT ranges from 0.6% (2/624)

to 7% (20/620) [2]. Electronic health records and administrative claims databases are valuable

resources for re-evaluating HT incident rate base on large papulation.

Besides the incident rate need, to identify the prediction factors for HT after ischemic

stroke has wide usage for clinical practices. Although HT risk factors have been previously

reported, many findings are contradictory making the understanding of contributory factors

of developing HT complex. For instance, the relationship between diabetes and developing

HT is conflicting. In experimental transient middle cerebral artery occlusion (tMCAO) mod-

els, diabetic rats seemed to exhibit increased HT after endovascular thrombectomy than nor-

moglycemic rats [3,4]. But other studies have come out with the opposite conclusion. Lee SH

et.al. found no correlation between HT and risk factors that were significantly associated with

HT, including age, sex, history of hypertension, diabetes, microbleeds, concomitant antiplate-

let use, and initial infarction volume [5]. Similarly, the correlation between high lipid profiles

and risk of HT is largely inconsistent with only sporadic findings to suggest an association [6–

10]. A variety of other factors, including age, gender, a high National Institutes of Health

Stroke Scale (NIHSS) score, fibrinogen concentration, lowered platelet count, reperfusion
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time, pregnancy, and cerebral microbleeds are reported to be associated with HT following

acute ischemic stroke [5,11,12]. It is difficult to know which of these risk factors separate

patients who have disproportionately higher HT risk from those with decreased risk of HT

[13].

Clinicians face tough treatment choices to minimize the risk of early ischemic stroke recur-

rence. Patients are routinely prescribed anticoagulant or antiplatelet therapy after tissue plas-

minogen activator (tPA) treatment [14] This reduces the risk of recurrent ischemic stroke, but

inversely increases the risk of developing HT [15]. A prediction model for HT after acute

ischemic stroke maybe an important clinical tool to understand the impact of therapeutic regi-

men selections on patient’s prognosis. We propose using a data-driven approach to define the

important clinical factors by incorporating all potential conditions, drugs, procedures, obser-

vations or measurements as candidate risk factors for developing HT.

At the end of 2016, the US Congress passed the "21st Century Act cure”, which approved

the use of “real-world evidence” to replace traditional clinical trials for expanded indication

testing[16], established the significance of real-world study (RWS) based on large number of

EMR data. The purpose of this study was to use a large-scale machine learning approach to

develop a model that can predict a patient’s individual risk of HT within 30 days of initial

ischemic stroke for those aged 45 or older base on the real-world observational EMR data. We

also investigate extensibility of this prediction model across diverse clinical settings by exter-

nally validating the model on ten different datasets.

Methods

All method’s code and materials have been made publicly available through GitHub and can

be accessed at https://github.com/OHDSI/StudyProtocols/tree/master/plpLiveValidation.

Source of data

For both model development and model evaluation we used longitudinal observational health

data from the research network called Observational Health Data Sciences and Informatics

(OHDSI). In the OHDSI network, these federated datasets consist of routinely collected health

data (i.e., electronic healthcare records and insurance claims records) that can be used to learn

new health insights. The analysis was executed across 11 data sources from three countries and

all were mapped to the Observational Medical Outcomes Partnership Common Data Model

(OMOP CDM) schema [17]. The OMOP CDM provides a homogeneous format for healthcare

data and standardization of underlying clinical coding systems that thus enables analysis code

to be shared across participating datasets in the network [18]. Each participating site (Janssen

Research & Development, IQVIA, Stanford University, and Regenstrief Institute/Indiana Uni-

versity) obtained institutional review board approval for the study and used de-identified data

and therefore the study was determined to be exempt from human subjects research review.

Informed consent was not necessary at any site. The characteristics of the datasets from each

site are summarized in Table 1 below. Full descriptions of each contributing data source can

be found as a table in the S1 Table. The full documentation of the OMOP CDM schema is

publicly available through GitHub and can be accessed at https://github.com/OHDSI/

CommonDataModel/wiki.

Study design

This study followed a retrospective multi-center observational cohort design[19]. We pub-

lished our protocol online, it can be found at https://github.com/OHDSI/StudyProtocols/tree/

master/plpLiveValidation.
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Study population. Our target cohort consisted of patients with a first ever ischemic stroke

event and who were aged 45 years or older at the time of the event. The index date is the date

of the initial ischemic stroke. The patients were also required to have at least 365 days of

observable time prior to the index and either an additional 30 days post index or a HT within

the 30 days. Patients could not have a cerebral hemorrhage recorded within the prior 30 days

or on the day index. We excluded patients who had a cerebral hemorrhage record on the same

day as the ischemic stroke, since in those cases it is impossible to discern whether these are

independent or sequential events. Records prior to the index date (the date of initial ischemic

stroke) are used to construct candidate predictors and those after index to identify whether

they experienced the HT within 30 days.

We defined ischemic stroke according to the Trial of Org 10172 in Acute Stroke Treatment

(TOAST) subtype classification system [19]: (1) large-artery atherosclerosis, (2) cardio embo-

lisms, and (3) small-vessel occlusion (lacunar infarctions). We did not include TOAST subtype

(4) stroke of other determined etiology and (5) stroke of undetermined etiology due to con-

straints in clinical coding and validation processes on secondary data sources.

We identified these patients in the databases through the occurrence of records with

OMOP standard concepts indicating these conditions. The stroke record of capture was cre-

ated through the OMOP CDM by using the CONDITION_OCCURRENCE table which cap-

tures all observed conditions related to a patient as captured within the source data (e.g.

insurance claims, electronic health records, hospital charge master). Observation windows

were constructed using the OMOP CDM OBSERVATION_PERIOD table which is a table

that contains records which uniquely define the spans of time for which a person is observed

and their clinical events are being captured within the source data, even if no events in fact are

recorded (e.g. healthy patient with no healthcare interactions). Detailed documentation of the

OMOP CDM conventions and technical processes for mapping to the common data model is

publicly available through the OHDSI Community GitHub [20,21]. A detailed list of clinical

concepts (diagnosis) used to construct the target cohort definition and related exclusion crite-

rion in this study are provided in as S2 Table.

Table 1. Patient-level characteristics across data sources.

Data Source Coverage Data Type No. of Patients % Time, year

(y)

Female Male Start End

Optum de-identified Electronic Health Record Dataset

(EHR) a
USA Electronic Health Records 93,423,000 54.0 46.0 2006 2018

IBM MarketScan1 Commercial Database USA Claims 142,660,000 51.2 48.8 2000 2018

IBM MarketScan1 Medicare Supplemental Database USA Claims 9,964,100 55.3 44.7 2000 2018

IBM MarketScan1 Multi-State Medicaid Database USA Claims 26,299,000 56.8 43.2 2006 2017

Japan Medical Data Center (JMDC) Japan Claims 5,550,200 53.8 46.2 2005 2018

IQVIA Disease Analyser Germany Germany Outpatient Primary Care 36,078,000 56.5 43.5 1992 2018

IQVIA Hospital Charge Data Master USA Hospital Claims 88,815,000 56.1 43.9 2007 2018

IQVIA PharMetrics Plus USA Claims 153,008,000 50.9 49.1 2010 2018

IQVIA LRxDx Open Claims USA Pre-adjudicated Pharmacy and Medical

Claims

654,052,000 53.0 47.0 2010 2019

Stanford Medicine Research Data Repository (STaRR) USA Electronic Health Records 3,113,080 53.9 46.1 2000 2018

Regenstrief Institute, Indiana Network of Patient Care USA Electronic Health Record 19,420,000 46.5 53.5 2005 2019

Table 1 Shows the Characteristics of the 11 datasets we studied.
aDataset used to develop prediction model

https://doi.org/10.1371/journal.pone.0226718.t001
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Outcome measures. Our outcome is HT which we clinically defined as a symptomatic

intracerebral hemorrhage occurring within one to 30 days after the initial ischemic stroke. We

defined intracerebral hemorrhage as any non-chronic intracranial hemorrhage that did not

originate from a trauma or aneurysm. We identified these patients in the databases through

the occurrence of records with concepts indicating these conditions. A detailed list of the clini-

cal diagnosis concepts used to construct the outcome definition and related exclusion criterion

in this study are provided as S3 Table.

Statistical analysis

Our analysis followed the standardized framework created by Reps et al [22] for patient-level

prediction model development and evaluation in observational healthcare data. The frame-

work is designed to ensure model development and evaluation are transparent and

reproducible.

We developed our prediction model using Optum de-identified Electronic Health Record

Dataset (Optum EHR), a large US Electronic Health Record database. We believed these data

would sufficiently capture the target population and outcome as these data contained all ages

and genders. This is an important consideration as insufficient representation of diversity in

the training set could limit the model’s performance [22]. We chose to develop a Lasso Logis-

tic Regression model as empirical evidence supports that this type of model generally per-

forms wells and has greater parsimony than other machine learning models such as

classification trees, random forests, artificial neural networks, and support vector machines

[23]. We used a standard split of 75% of the data to train the model and the remaining 25% of

the data (the hold out set) was used for internal validation. To select the optimal regulariza-

tion hyper-parameter, we performed three-fold cross validation on the training dataset to

search various regularization values and selected the regularization value that maximized the

area under the receiver operating characteristic curve (AUC) [22]. On the 75% training data

we used 3-fold cross validation to pick the hyper-parameter. Considering the data are large,

using 66% of the data for each fold to train the model is sufficient to get near optimal models.

To make the study more sensitivity we investigated the impact of this choice by repeating the

model development on the 75% training data but using 5-fold and 10-fold cross validation

when picking the optimal hyper-parameter. The discrimination was similar when using 3, 5

or 10 folds.

The overall model performance was also evaluated using the AUC. Sensitivity, specificity

and positive predictive value were also calculated at different predicted risk cut-offs. The

calibration was inspected via a plot showing the mean predicted risk against the fraction of

patients with the outcome when the data are partitioned into deciles based on predicted

risk.

In additional to internal validation, we implemented the model across 10 diverse datasets to

conduct an external validation and gain insight into model transportability. The software used

to develop and evaluate the model was the OHDSI Patient-Level-Prediction, an open-source

patient level prediction modeling R package that programmatically expresses the patient-level

prediction framework. The Patient-Level-Prediction package is externally published and

maintained by the OHDSI community[24]. Using this framework, our HT risk model can be

freely downloaded and consistently applied to any OMOP CDM-compliant observational

database.

All our analytic code is publicly available at GitHub. The study package, which contains the

specific cohort definitions used in this analysis, can be accessed at https://github.com/OHDSI/

StudyProtocols/tree/master/plpLiveValidation.
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Candidate predictors

We identified a set of candidate predictor variables including demographics such as gender

and age, collapsed into 5-year groupings. We also created an ordinal variable for the calendar

month in which the ischemic stroke occurred, reflecting potential seasonal dependencies. In

addition, we took all condition, drug, procedure, measurement, and clinical observations

across the datasets and created binary variables–where a 1 represented the presence of a vari-

able and a 0 represented the absence thereof. The absence of a patient’s condition during a

valid observation period was inferred to mean that the clinical event did not occur. We defined

three distinct observational time windows for binary variables which indicated the presence or

absence of all conditions, drug, procedure, measurement and clinical observation: (1) in the 30

days prior to the target index (i.e. ischemic stroke), (2) in the 365 days prior to the target index

or (3) any time prior to the target index. For example, patients with a record for type 2 diabetes

in the prior 30 days would have a value of 1 corresponding to the variable “condition record in

the prior 30 days: Type 2 diabetes” and patients without a type 2 diabetes record in the prior

30 days would have a value of 0. Variables were constructed for the three different time periods

and for every condition, drug, procedure, measurement or clinical observation recorded for

any patient in the target population. The hierarchy of variables is defined as part of the OMOP

Standard Vocabularies [21] semantic classification system. It is standard across all OMOP

CDMs and uses the same ontologies. Although this resulted in thousands of candidate predic-

tors, Lasso Logistic Regression method adds a penalty to model complexity that generally leads

to a smaller subset of candidate predictors being included and greater parsimony in the final

model [25].

Results

In total, there were 621,178 ischemic stroke patients in the development database, of which

5,624 had HT within 30 days of initial ischemic stroke. In the internal validation of the risk

model, an AUC of 0.75 was achieved. The incidence of HT within 30 days of initial ischemic

stroke varied between 0.1% and 1.79% across the datasets. In total, there were 5,515,508 ische-

mic stroke patients across 10 external validation databases, of which 80,777 had HT within 30

days of initial ischemic stroke. The discriminative performance of the models developed in the

different datasets are presented in Table 2. The model and results are publicly available and

can be viewed interactively from http://data.ohdsi.org/plpLive18Study/.

Out of 169,967 candidate predictors, only 612 were selected into the final model. History of

other craniocerebral hemorrhage (intracranial hemorrhage, cerebral hemorrhage, spontane-

ous cerebral hemorrhage), cerebral edema, and compression of brain prior to developing

ischemic stroke are the top three covariates contributing to the model predicting HT in a

patient. Full list of the predictors also presented as a table in the S4 Table. The ROC and model

calibration plots are presented in Fig 1. The model had a mean AUC of 0.71, ranging between

0.60–0.78 across network sites.

We investigated whether a simpler model could be developed by using a higher number of

folds during cross validation (5 and 10) to pick the optimal regularization hyper-parameter as

the model will likely pick more regularization when the folds increase. The model trained

using the hyper-parameter from 5-folds cross validation still had 578 variables and 10-folds

still had 557 variables. For the model to achieve a high discrimination, it seems it needs to

include a large number of variables.”

This model can be used clinically to identify the 10% of patients assigned a risk of 0.0028 or

lower as being low risk (risk ~0.025%) and the 6.8% of patients assigned a risk of 0.02 or

Predicting HT in acute ischemic stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0226718 January 7, 2020 6 / 12

http://data.ohdsi.org/plpLive18Study/
https://doi.org/10.1371/journal.pone.0226718


greater as being high risk (risk ~4.4%). Table 3 details how we can adapt thresholds of the

model to identify assigned risk.

Discussion

This study developed a predictive model for symptomatic HT, a deadly complication of ische-

mic stroke, based on the routinely collected observational health data. According to the prior

Table 2. Model performance across OHDSI data network.

Database T

(Test)

O

(Test)

Incidence

(%)

AUROC AUPRC

Optum de-identified Electronic Health Record Dataset (EHR) a 621,178 (155,259) 5,624 (1,406) 0.91 Test: 0.75

Train: 0.79

Test: 0.04

Train: 0.06

IBM MarketScan1 Commercial Database 274,384 4,836 1.76 0.76 0.07

IBM MarketScan1 Medicare Supplemental Database 441,939 6,772 1.53 0.72 0.05

IBM MarketScan1 Multi-State Medicaid Database 151,876 1,629 1.07 0.75 0.04

Japan Medical Data Center (JMDC) 20,181 31 0.15 0.7 0.05

IQVIA Disease Analyser Germany 41,311 45 0.11 0.5 0.02

IQVIA Hospital Charge Data Master 191,036 2011 1.05 0.68 0.02

IQVIA PharMetrics Plus 556,151 9951 1.79 0.78 0.11

IQVIA LRxDx Open Claims 4,331,167 54,973 1.27 0.60 0.03

Stanford Medicine Research Data Repository (STaRR) 7,930 142 1.79 0.76 0.12

Regenstrief Institute, Indiana Network of Patient Care 55,684 387 0.69 0.69 0.03

Table 2 shows the model performance across the11 datasets we studied. T = Target cohort, O = Outcome cohort, AUROC = Area under the receiver operating curve and

AUPRC = Area under the precision recall curve.
a Development database

https://doi.org/10.1371/journal.pone.0226718.t002

Fig 1. Model performance across OHDSI network sites. Fig 1 shows the receiver operating characteristic plot and calibration plot

for the internal and external validation.

https://doi.org/10.1371/journal.pone.0226718.g001
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research, the incident rate of symptomatic HT ranges from 0.6%(2/624) to 7%(20/620)[2], the

study population of HT always limited to a very small one. As a result of that, it is difficult to

develop a model to predict HT by a normal epidemiological investigation. In our study, due to

the size of the database (total 93,423,000 patients, 621,178 patients have ischemic stroke), there

were over 6,000 cases of HT within 30 days of ischemic stroke. This provided enough data to

learn a model that obtained an internal AUC of 0.75. Supported by the OHDSI community

and the OMOP CDM, we run an external validation across 10 datasets (total 1,232,382,380

patients; 5,515,508 ischemic stroke patients, of which 80,777 had HT) contain patients record

of all races, include America, Europe, and Asia, and achieved AUC between 0.60–0.78.

The overall incidence of hemorrhagic transformation ranged between 0.11% (45/41,311)-

1.79% (9951/556,151) in the 10 external validation datasets. While the incidence is lower than

the prior studies report, it is still consistent with the lower range of observed incidence of

symptomatic HT (0.60% to 7.0%)[2]. The incident rate was extremely low in dataset named

IQVIA Disease Analyser Germany, the reason for this may be that these data focus on captur-

ing care related to major chronic diseases (cancer, dementia, diabetes) [26] and underrepre-

sents real hospital care of other diseases, such as hemorrhagic transformation. Other real

world data sets have similar nuances. Japan Medical Data Center (JMDC) is data from 60 Soci-

ety-Managed Health Insurance plans covering workers aged 18 to 65 and their dependents

(children younger than 18 years old and elderly people older than 65 years old) from Japan.

The main reason for its low incidence rate could be this database is designed for capturing

administrative health data and cases may be underreported due to lack of specificity in billing

codes used to reimburse for the condition of interest [27].

The performance varied across the 10 datasets, AUC range between 0.50 to 0.78. Databases

named disease analyzer Germany with low HT prevalence may be less appropriate candidates

for implementing HT risk models. The database of IQVIA LRxDx Open Claims also only had

an AUC of 0.6, the reason for that could be the lack of detailed medical process records of

patients. The model achieved AUC consists of higher than 0.75 in datasets Optum de-identi-

fied Electronic Health Record Dataset (EHR), IBM MarketScan1Multi-State Medicaid Data-

base, IQVIA PharMetrics Plus and Stanford Medicine Research Data Repository (STaRR)

shows its transportability.

We observed several predictors that were consistent with the risk factors identified in the

literature. AFib, associated with an increased risk of HT as well as worse stroke outcomes [6],

was selected as a positive covariate. Similarly, prior research indicates that ‘male’ are at a

Table 3. Patients with risk greater than 1% population average risk and patients with risk less than 1% population average risk.

Predicted risk This percentage of patients would be

flagged

Risk in flagged group

(%)

Risk relative to

population

If we flag patients as high risk with a predicted

risk > =

0.060 1% 10.0 10

0.020 6.8% 4.4 4.4

0.013 14% 3.1 3.1

0.000 100% 1.0 1

If we flag patients as low risk with a predicted risk

<

0.003 10% 0,025 1/40

0.005 38% 0.12 1/8

0.013 86% 0.47 1/2

0.000 100% 1.0 1

Table 3 illustrates various cut off values. Flagging patients as high risk with a predicted risk higher than certain predicted risk could be used to identify a subset of the

patients that have a higher than average risk. Flagging patients as low risk lower than certain predicted risk could be used to identify a subset of the patients that have a

lower than average risk.

https://doi.org/10.1371/journal.pone.0226718.t003
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greater risk of HT [1]. The model selected ‘male’ as a covariate while ‘female’ was not a selected

predictor. There are other covariates selected by the model but were not reported by prior

studies, for example, homonymous hemianopia as well as the use of ondansetron and dexa-

methasone. All other predictors we found are worth investigating in further studies because

this RWE study can considered as complement of the findings from RCTs, provide valuable

information on treatment practices and patient characteristics in a real-world setting [28].

The advantage of this study is that the extensive external validation has highlighted where,

and where not, this model may be suitably applied. Few prediction models have been exter-

nally validated on 10 external datasets [6] and the external validation suggest our model can be

transported to ‘US EHRs’ and other datasets. The respectable performance of the model in the

EMR shows the possibility of inserting it into a clinical information system as a CDSS unit.

The model is suitable for different datasets, for people of all races.

The model was trained with patient level characteristics, like specific demographics, medi-

cal history and prior health behaviors. As a reason for that, it goes beyond answering HT risk

about average treatment effects to deliver individualized insights about a patient’s personalized

future risk of experiencing HT given what the EMR data records about the patient in the past.

This patient-level predictive modeling can consider as a complement to the population-level

estimation of HT risk. On the other hand, because of the low incident rate of HT, it was a diffi-

cult topic to research by RCT studies. But by the real-world observational data, although the

incidence of hemorrhagic transformation was only 1% in the Optum EHR data, due to the size

of the database there were over 6,000 cases of HT within 30 days of ischemic stroke. This pro-

vided enough data to learn a model that obtained an internal AUC of 0.75. This indicates that

the real-world observation data could help researchers solve problems that were impossible

when running an RCT study.

While some data sets may contribute high counts of a condition occurrence of the outcome

of interest, a high outcome count does not guarantee the data presented adequately captured

the strongest candidate predictors. Therefore, model performance may be lower in data sets in

which the strongest predictors are not present. This is a common challenge with model porta-

bility across real world data as we cannot always guarantee that the data the model is run on

will contain the covariates that generate the most accurate prediction score. A main constraint

of the current model is that it cannot be deployed without first standardizing the data for the

patients at risk to the OMOP CDM. Although there is minimal information loss[25], mapping

source data requires time and effort. Worthy of mention that a pilot study is working on to

assist with tools transporting OMOP prediction models directly to EHRs at the bedside by

FHIR (Fast Healthcare Interoperability Resources) [29]. We can expect in the further, this

model can inform clinicians in the EMR system if a patient has a high risk of HT.

This study is not immune to the common challenges faced when using real world datasets.

There is a potential for missing observations related to a patient who could experience the out-

come event outside of the source data, such as at another health system that uses a different

electronic health record than the data we studied. We acknowledge this could contribute to

potential misclassification bias where a lack of observation is not congruent with a lack of

event occurrence. This is a common challenge in the secondary use of data. However, this

study used a limited window of follow-up which helps with minimizing the impact of this bias.

Conclusion

A HT prognostic predict model is developed with Lasso Logistic Regression based on routinely

collected EMR data can identify patients have a higher risk of HT than the population average

with an AUC of 0.78. It shows the possibility to learn a risk model from observational data and
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OMOP CDM is an appropriate data standard for EMR second use in clinical multicenter

research for prognostic prediction model development and validation. Also, we were able to

show that the model can be transported to different patients across the world, despite their

data being captured through different mechanisms. This study further demonstrates the appli-

cation of a framework for developing transportable models that could be used to assist clini-

cians in identifying and managing the personalized risk for patients with a specific disease base

on a patient’s EMR records. In the future, combining this model with clinical information sys-

tems will assist clinicians to make the right therapy decision for patients with acute ischemic

stroke.
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for Hemorrhagic transformation in patients with acute middle cerebral artery infarction. ncbi.nlm.nih.gov

[Internet]. [cited 2019 Apr 30]; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353105/

Predicting HT in acute ischemic stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0226718 January 7, 2020 11 / 12

https://www.ahajournals.org/doi/10.1161/JAHA.118.010133
https://www.ahajournals.org/doi/10.1161/01.STR.30.7.1326
http://www.ncbi.nlm.nih.gov/pubmed/10390303
https://www.nature.com/articles/s41598-018-25820-y
http://www.springerlink.com/index/10.1007/978-3-7091-0693-8_9
http://www.springerlink.com/index/10.1007/978-3-7091-0693-8_9
https://www.sciencedirect.com/science/article/pii/S0303846718303457
https://www.sciencedirect.com/science/article/pii/S0303846718303457
https://www.europeanreview.org/wp/wp-content/uploads/673-678.pdf
https://www.europeanreview.org/wp/wp-content/uploads/673-678.pdf
https://www.karger.com/Article/Abstract/335014
http://www.actaneurologica.be/pdfs/2011-4/02-Cordenier%20et%20al.pdf
http://www.actaneurologica.be/pdfs/2011-4/02-Cordenier%20et%20al.pdf
https://www.ahajournals.org/doi/abs/10.1161/strokeaha.116.014600
https://www.ahajournals.org/doi/abs/10.1161/strokeaha.116.014600
https://n.neurology.org/content/68/10/737.short
https://n.neurology.org/content/68/10/737.short
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353105/
https://doi.org/10.1371/journal.pone.0226718


12. Xu X, Li C, Wan T, Gu X, Zhu W, Hao J, et al. Risk factors for hemorrhagic transformation after intrave-

nous thrombolysis in acute cerebral infarction: a retrospective single-center study. Elsevier [Internet].

[cited 2019 Apr 30]; https://www.sciencedirect.com/science/article/pii/S1878875017301146

13. Landolfi A, Selvetella G, Cugino D, . . . G G journal of, 2016 undefined. Hemorrhagic transformation of

acute ischemic stroke is limited in hypertensive patients with cardiac hypertrophy. Elsevier [Internet].

[cited 2019 Apr 30]; https://www.sciencedirect.com/science/article/pii/S0167527316310671

14. Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD, et al. Guidelines for

the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare

professionals from the American Heart Association/American Stroke Association. Stroke. 2014;

45(7):2160–236. https://doi.org/10.1161/STR.0000000000000024 PMID: 24788967

15. Paciaroni M, Agnelli G, Caso V, Tsivgoulis G, Furie KL, Tadi P, et al. Prediction of Early Recurrent

Thromboembolic Event and Major Bleeding in Patients With Acute Stroke and Atrial Fibrillation by a

Risk Stratification Schema. Stroke [Internet]. 2017 Mar [cited 2019 Apr 30]; 48(3):726–32. Available

from: https://www.ahajournals.org/doi/10.1161/STROKEAHA.116.015770 PMID: 28183856

16. Gabay M. 21st century cures act. Hosp Pharm. 2017; 52(4):264. https://doi.org/10.1310/hpj5204-264

PMID: 28515504

17. Observational Health Data Sciences and Informatics,OMOP Common Data Model [Internet]. [cited

2019 Apr 17]. https://github.com/OHDSI/CommonDataModel/

18. FitzHenry F, Resnic FS, Robbins SL, Denton J, Nookala L, Meeker D, et al. Creating a Common Data

Model for Comparative Effectiveness with the Observational Medical Outcomes Partnership. Appl Clin

Inform [Internet]. 2015 Dec 19 [cited 2019 May 1]; 06(03):536–47. Available from: http://www.thieme-

connect.de/DOI/DOI?10.4338/ACI-2014-12-CR-0121

19. A H Jr, Bendixen B, Kappelle L, J B, 1993 undefined. Classification of subtype of acute ischemic stroke.

Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment.

Am Hear Assoc [Internet]. [cited 2019 May 1]; https://www.ahajournals.org/doi/pdf/10.1161/str.24.1.

7678184

20. Schuemie M. WhiteRabbit [Internet]. github. [cited 2019 May 16]. https://github.com/OHDSI/

WhiteRabbit

21. Clairblacketer. Definition and DDLs for the OMOP Common Data Model (CDM). 2019.

22. Reps J, Schuemie M, . . . MS-J of the, 2018 undefined. Design and implementation of a standardized

framework to generate and evaluate patient-level prediction models using observational healthcare

data. academic.oup.com [Internet]. [cited 2019 May 1]; https://academic.oup.com/jamia/article-

abstract/25/8/969/4989437

23. Jie M, Collins G, Steyerberg E, . . . V J of clinical, 2019 undefined. A systematic review shows no perfor-

mance benefit of machine learning over logistic regression for clinical prediction models. Elsevier [Inter-

net]. [cited 2019 May 1]; https://www.sciencedirect.com/science/article/pii/S0895435618310813

24. Reps JM, Schuemie MJ, Suchard MA, Ryan PB RP. OHDSI Patient Level Prediction Package [Inter-

net]. https://github.com/OHDSI/PatientLevelPrediction

25. Kassambara A. Machine Learning Essentials: Practical Guide in R [Internet]. 2018 [cited 2019 May 1].

https://books.google.com/books?hl=zh-CN&lr=&id=745QDwAAQBAJ&oi=fnd&pg=PP2&dq=Machine

+Learning+Essentials:+Practical+Guide+in+R&ots=5DNtzSS2Pp&sig=vTw7xrJZfcAhBK-B-

4Y6I8Mc1yAl

26. Rathmann W, Bongaerts B, Carius H-J, Kruppert S, Kostev K. Basic characteristics and representative-

ness of the German Disease Analyzer database. Int J Clin Pharmacol Ther. 2018; 56(10):459–66.

https://doi.org/10.5414/CP203320 PMID: 30168417

27. Tanaka S, Seto K, Kawakami K. Pharmacoepidemiology in Japan: medical databases and research

achievements. J Pharm Heal care Sci. 2015; 1(1):16.

28. Camm AJ, Fox KAA. Strengths and weaknesses of ‘real-world’studies involving non-vitamin K antago-

nist oral anticoagulants. Open Hear. 2018; 5(1):e000788.

29. Jiang G, Kiefer RC, Sharma DK, Prud’hommeaux E, Solbrig HR. A consensus-based approach for har-

monizing the OHDSI common data model with HL7 FHIR. Stud Health Technol Inform. 2017; 245:887.

PMID: 29295227

Predicting HT in acute ischemic stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0226718 January 7, 2020 12 / 12

https://www.sciencedirect.com/science/article/pii/S1878875017301146
https://www.sciencedirect.com/science/article/pii/S0167527316310671
https://doi.org/10.1161/STR.0000000000000024
http://www.ncbi.nlm.nih.gov/pubmed/24788967
https://www.ahajournals.org/doi/10.1161/STROKEAHA.116.015770
http://www.ncbi.nlm.nih.gov/pubmed/28183856
https://doi.org/10.1310/hpj5204-264
http://www.ncbi.nlm.nih.gov/pubmed/28515504
https://github.com/OHDSI/CommonDataModel/
http://www.thieme-connect.de/DOI/DOI?10.4338/ACI-2014-12-CR-0121
http://www.thieme-connect.de/DOI/DOI?10.4338/ACI-2014-12-CR-0121
https://www.ahajournals.org/doi/pdf/10.1161/str.24.1.7678184
https://www.ahajournals.org/doi/pdf/10.1161/str.24.1.7678184
https://github.com/OHDSI/WhiteRabbit
https://github.com/OHDSI/WhiteRabbit
https://academic.oup.com/jamia/article-abstract/25/8/969/4989437
https://academic.oup.com/jamia/article-abstract/25/8/969/4989437
https://www.sciencedirect.com/science/article/pii/S0895435618310813
https://github.com/OHDSI/PatientLevelPrediction
https://books.google.com/books?hl=zh-CN&lr=&id=745QDwAAQBAJ&oi=fnd&pg=PP2&dq=Machine+Learning+Essentials:+Practical+Guide+in+R&ots=5DNtzSS2Pp&sig=vTw7xrJZfcAhBK-B-4Y6I8Mc1yAl
https://books.google.com/books?hl=zh-CN&lr=&id=745QDwAAQBAJ&oi=fnd&pg=PP2&dq=Machine+Learning+Essentials:+Practical+Guide+in+R&ots=5DNtzSS2Pp&sig=vTw7xrJZfcAhBK-B-4Y6I8Mc1yAl
https://books.google.com/books?hl=zh-CN&lr=&id=745QDwAAQBAJ&oi=fnd&pg=PP2&dq=Machine+Learning+Essentials:+Practical+Guide+in+R&ots=5DNtzSS2Pp&sig=vTw7xrJZfcAhBK-B-4Y6I8Mc1yAl
https://doi.org/10.5414/CP203320
http://www.ncbi.nlm.nih.gov/pubmed/30168417
http://www.ncbi.nlm.nih.gov/pubmed/29295227
https://doi.org/10.1371/journal.pone.0226718

